Derivatives of carboxylic acids

Vladimíra Kvasnicová

Derivatives of carboxylic acids

1. substitutional derivatives

- → substitution in the chain of an acid
- \rightarrow no change in the carboxyl group

2. functional derivatives

→ functional <u>carboxyl group is changed</u>

Substitutional derivatives

· substitution in the chain of an acid

1.1. HALOGEN DERIVATIVES $R(X)-COOH \qquad X = Cl, Br, I, F$

prefix: chloro-, bromo-, iodo-, fluoro-

1.2. HYDROXY DERIVATIVES R(OH)—COOH

- · prefix: hydroxy-
- can be oxidized to oxo derivatives (= dehydrogenation)
- trivial names!

Important hydroxy derivatives

- **lactic acid** (= 2-hydroxypropanoic acid or α -hydroxypropionic acid)
- β-hydroxybutyric acid
 (= 3-hydroxybutanoic acid)
- malic acid (= 2-hydroxybutanedioic acid or α -hydroxysuccinic acid)
- citric acid
 (= 2-hydoxypropane-1,2,3-tricarboxylic acid)
- salicylic acid(= 2-hydroxybenzoic acid)

1.3. OXO DERIVATIVES R-(C=0)-COOH

- prefix: oxo- / keto-
- can be reduced to hydroxy derivatives
- trivial names!

Important oxo derivatives:

- > pyruvic acid (= 2-oxopropanoic acid)
- > acetoacetic acid (= 3-oxobutanoic acid)
- > oxaloacetic acid (= 2-oxobutanedioic acid)
- $\triangleright \alpha$ -ketoglutaric acid (= 2-oxopentanedioic acid)

1.4. AMINO DERIVATIVES R(NH₂)—COOH

- · prefix: amino-
- α -L-amino acids are found in proteins
- trivial names!

examples:

- glycine (= 2-aminoethanoic acid)
- alanine (= 2-aminopropanoic acid)
- phenylalanine (= 2-amino-3-phenylpropanoic a.)

Functional derivatives

functional <u>carboxyl group is changed</u>

```
2.1. SALTS R-COO-M^+ (M^+ = metal cation)
```

- = products of neutralization (acid + base → salt + water)
- suffix: -ate or -oate
 -ic acid → -ate / -oic acid → -oate
- $R-COO^-$ = carboxylate (anion of c.a.)
- <u>full name</u>: cation carboxylate (sodium acetate)

2.2. ESTERS

$$R_1 - O - CO - R_2$$

- = products of esterification (acid + alcohol → ester + water)
- the opposite reaction = ester hydrolysis

- · suffix: -ate
- · R1-O- = rest of alcohol
- R1 = alkyl (from the alcohol name: "alkyl" alkohol)
- <u>full name</u>: alkyl carboxylate
 (methyl acetate = methyl ethanoate)

Examples of esters

- ethyl formate = ethyl methanoate
- methyl benzoate
- methyl salicylate ≠ acetylsalicylic acid
- phenyl acetate = phenyl ethanoate
- · CH₃-CH₂-CO-O-CH₃ (apple)
- CH₃-CH₂-CH₂-CO-O-(CH₂)₄-CH₃ (apricot)
- CH₃-CO-O-(CH₂)₄-CH₃ (banana)
- · CH₃-CH₂-CO₋O-CH₂-CH₃ (pineapple)
- H-CO-O-CH₂-CH₃ (rum)

Properties and reactions of esters

- lower boiling points than carboxylic acids and alcohols (~ absence of hydrogen bonds)
- less soluble in water than carboxylic acids
- esters have a fruity smell
- reactions:
 - > ester hydrolysis
 - > saponification = hydrolysis by a strong base
 - \rightarrow salt and alcohol
 - \rightarrow salts of long chain fatty acids are **SOAPS**
 - → polymerization → polyesters (from difunctional monomers)

2.3. ANHYDRIDES R_1 -CO-O-CO- R_2

- acid → anhydride
 (acetic acid → acetic anhydride)
- · organic, organic-inorganic

examples

- acetic formic anhydride
- phtalic anhydride
- "phosphoglycerate" (= phosphoric glyceric anhydride)

2.4. AMIDES

$R-CO-NH_2$

- suffix: -amide (ethanamide)
- -ic or -oic acid → -amide (acet<u>amide</u>)
- substituted -NH₂ group: N-alkyl...amide
- substituted amide groups are found in proteins (the peptide bond = "amide bond")
- nitrogen atom contains an unshared pair of electrons \rightarrow delocalization \Rightarrow amides are not basic
- · strong intermolecular H-bonds: amides are solids
- low MW amides are soluble in water
- carboxylic acid + ammonia (or amine) \rightarrow amide + water

2.5. ACYLHALIDES R-CO-X X = halogen

- · acyl name + halide
- e.g. acetyl chloride (= ethanoyl chloride)
 butyryl bromide (= butanoyl bromide)

2.6. NITRILES

R—C≡N

- hydrocarbon + suffix: -nitrile or alkyl cyanide
- e.g ethanenitrile or methyl cyanide butanenitrile or propyl cyanide
- mostly toxic liquids

Exercise

- · H₂N-CH₂-CH₂-COOH
- · CH₃-CO-CH₂-COOH
- CH₃-CH(OH)-CH₂-COOH
- CH₃-CH₂-CO-O-CH₃
- CH₃-CO-COOH
- CH₃-CH₂-O-CH₃
- · CH₃-CO-CH₂-CH₃
- CH₃-(CH₂)₁₄-COOH
- · CH3-CH2-CH2-COONa
- (CH₃-CH₂-COO)₂Ca
- CH₃-CH₂-O-CO-H

Exercise

- C₆H₅-CO-Cl
- H-CO-O-CH₂-CH₃
- · CH₂=CH-CN
- · H-CO-NH₂
- · CH₃-CH₂-CO-NH-CH₂-CH₃

